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Abstract
The paper provides a complete characterization of Nash equilibria for games in which
n candidates choose a strategy in the form of a platform, each from a circle of fea-
sible platforms, with the aim of maximizing the stretch of the circle from where the
candidate’s platform will receive support from the voters. Using this characterization,
it is shown that if the sum of all players’ payoffs is 1, the Nash equilibrium pay-
off of each player in an arbitrary Nash equilibrium must be restricted to the interval
[1/2(n − 1), 2/(n + 1)]. This implies that in an election with four candidates, a can-
didate who is attracting less than one-sixth of the voters can do better by changing his
or her strategy.

1 Introduction

The subject of human welfare and political institutions has been an ancient field of
inquiry. However, we owe more to Kenneth Arrow than anybody else the bringing
of formal reasoning and axiomatic rigor to the discipline (Arrow 1950, 1951). There
had been other related works before that. There was the famous 1929 paper by Harold
Hotelling, Arrow’s PhD adviser, who provided the tools for a purely positive exercise
concerning the outcomes of democratic elections. There were the works of Bergson
(1938) and Samuelson (1947) that created the concept of a social welfare function,
which would lend rigor to early ideas pertaining to utilitarianism. This led to a sub-
stantial literature on the normative and positive aspects of using democratic processes
to aggregate individual preferences (Sen 1970; Pattanaik 1971; d’Aspremont andGev-
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ers 1977; Maskin 1978; Suzumura 1983). Our aim in this paper is to make a small
but pointed contribution to this broad area of divergent preferences and democratic
aggregation.

Starting with Hotelling’s (1929) classic paper, the economics of location, for
instance, where and how firms position themselves on a line or on a surface, or the
ideological space which political parties try to capture, has become an important tool
for analyzing product quality differentiation and antitrust law, retail marketing and
the theory of vendor positioning and, most prominently, political economy and elec-
toral politics. In the area of political economy, it has led to the celebrated median
voter theorem of Black (1948) for majority decisions, and of Downs (1957) for a
representative democracy, which enabled us to take on some of the big questions of
electoral democracy, and development (see, for instance, Stokes 1963; Osborne 1995;
Congleton 2002; Acemoglu and Robinson 2005).

The present paper is an exercise in the pure theory of location choice over a circle
or rotary. Given the wide use of location analysis in economics and political science
it is hoped the paper will provide foundations for different kinds of practical studies
on electoral democracy or retail trading. Each of these entail further complications.
In the case of retail stores choosing their location, the analysis is complicated by the
fact that they can, typically, choose the price as well. In electoral politics, personal
attributes (for example, the appearance) of the candidate may matter as well and not
just the ideological platform the candidate offers. However, the theorems reported in
this paper should be of value for all such models. For the most part, we refer to the
problem of electoral democracy and use its associated language, although our study
is best viewed at a more abstract level.

The importance of the pivotal voter was recognized as early as 1785 by Condorcet.
However, following the influential work of Hotelling, the bulk of the analysis got
focused on voters spread over a line. At one level, our paper is a reminder that there can
be other formations among voters and these can lead to related but distinct results. In
our set up, for instance, it is not the case that candidates invariably converge on the same
electoral platform but, instead, we get the result that no matter how many candidates
contest an election, there will never be more than two candidates announcing the same
platform.1

As Stokes (1963, p. 368) had noted over a half a century ago, “The use of spatial
ideas to interpret party competition is a universal phenomenon of modern politics.
Such ideas are the common coin of political journalists…” Congleton (2002) points
out in his survey of the median voter theorem, “Most analytical work in public choice
is based upon relatively simple models of majority decision making. These models
are widely used even though the researchers know that real political settings are more
complex than themodels seem to imply. The… simplemodels provide uswith engines
of analysis that allow a variety of hypotheses about more complex phenomena to
be developed, many of which would be impossible (or uninteresting) without the
frame of reference provided by simple models.” It is in this spirit that we venture into
investigating electoral democracy in this paper.

1 Similar issues of cluster and spread arise in the literature on spatial location and agglomeration (Fujita
and Thisse 1996; Pal 1998; Matsushima 2001).
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Fig. 1 Two dimensional attributes

To understand the idea of using location analysis to investigate electoral democracy,
suppose voters are interested in two aspects of candidates running for office: how anti-
establishment they are, and their economic ideology, for instance, their position on
economic conservatism. Clearly, each voter’s ideal can be represented as a point in
a two-dimensional space. Suppose all voters ideals lie on a circle, of the kind shown
in Fig. 1, and suppose each candidate has to announce his or her agenda which is
basically a point on the circle. Thus we can think of candidates S and T announcing
their respective agenda as points S and T on the circle as shown. From the vertical
perspective, S and T look identical but they are far apart in terms of economic ideology,
measured on the horizontal axis. (Any resemblance of S and T to Sanders and Trump
is entirely spurious.) If we assume that voters opt for the candidate closest to his or
her ideal, the closeness being measured in terms of distance along the circle, then we
have a classic location-choice game.2

Before delving into the analysis, it is useful to make a few pertinent remarks about
our choice of the circle as the space of voter ideals, and the related choice of the arc
distance along the circle as the measure of the closeness of a candidate’s platform to
a voter’s ideal.

The most general assumption would be to think of a finite number of individuals
scattered arbitrarily in a specified subset of an M dimensional Euclidean space (where

2 Alternatively, we could think of the circle as a rotary along which people in a town live. The only way
to travel in this town is along the rotary (in any direction). Two retail vendors, selling goods which have
exogenously fixed prices, have to set up shops at points on the rotary. If we make the reasonable assumption
that customers will go to the nearest store, and each vendor is interested in maximizing the number of
customers she has, then again we have a classic game theory problem. Similar arguments apply to brand
proliferation (see d’Aspremont et al. 1979; Schmalensee 1978; Salop 1979; Basu 1993; Gabszewicz et al.
1986; Brander and Spencer 2015).
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M is the number of distinct issues that a voter cares about); and then, to have a finite
number of candidates choose their platforms as points in that subset. [For M = 2,
the specified subset could be a circle, a disc, or the entire two-dimensional Euclidean
space]. In general, that would be very difficult to analyze and might be riddled with
non-existence problems. Hotelling moved away from that framework by considering
an infinite number of voters distributed on a finite length straight line (thereby focusing
on a single over-riding issue that a voter cares about). That became such an innate part
of our thinking that we seem to be somewhat rudderless in analyzing the rise of politics
in which some candidate is conservative in terms of economics but politically a radical
and vice versa for another candidate.

To analyze such cases, we need (for a start) to deal with at least two independent
issues that voters care about. That is, it should not be possible to predict the voter’s
view on the second issue by knowing her view on the first issue (otherwise, Hotelling’s
formulation would suffice, as there would be only one over-riding issue). Our paper
can be viewed as a first cut at formulating such a framework of analysis. If the space of
voter ideals is a circle, it captures an essential aspect of this problem; as illustrated in
Fig. 1, platforms S and T both reflect anti-establishment positions, but it is not possible
to predict the economic ideology of the platforms from this, as that might vary widely.

We are, of course, aware that by treating the circle as the space of voter ideals we
are using a strong assumption, which has some unintended features. To remedy the
situation, one might explore in future research formulations in which (for instance)
one moves from the unit circle as the space of voter ideals to the closed unit disc
(which includes all points on and inside the unit circle). A pragmatic way to do this
would be (as a generalization of our current framework), to consider the space of voter
ideals to be a finite number of concentric circles, a framework which approaches the
unit closed disc model as the number of concentric circles becomes large. The crucial
issue one would have to face in such a formulation is how to define a reasonable notion
of closeness between platforms which lie on distinct concentric circles.3

It may also be pointed out that the set up we use has some important history in
industrial organization theory, law and economics, as exemplified by the papers of
Schmalensee (1978) and Salop (1979). Since the abstract results in our paper have as
much bearing on political economy as on industrial organization, the paper may be
viewed as a contribution to the latter as well.

The specific problem that we want to address in this paper is the following. If there
are n candidates in an election how will they position themselves on the circle in
equilibrium? And, once politicians have taken up positions, is there an easy way to
check if this is an equilibrium? The entire exercise in this paper is done by defining
equilibrium in the sense of Nash. What the paper shows is that there is a surprisingly
easy answer to the question just posed (see Theorem 1).

Hotelling’s classic location game (for two vendors with exogenously fixed prices)
has a unique Nash equilibrium. However, for many non-cooperative games, there
is a multiplicity of Nash equilibria, and this is seen as a principal drawback of the

3 A voter whose ideal is on an inner concentric circle might feel perfectly aligned with the platform of the
corresponding radial point on the unit circle (closest to it). The view might be that the two platforms differ
only in “intensity” of preference on the two issues, but not in “direction”. In this case, we recover precisely
the model with only the unit circle as the space of voter ideals.
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equilibrium concept, as its predictive power can be limited as a result. In our setting
too, there can be many (in fact, a continuum of) Nash equilibria. However, instead
of focusing on equilibrium outcomes, if we shift our focus to equilibrium payoffs,
a rather general result on the distribution of payoffs in Nash equilibria emerges in
this model. We find that the entire set of Nash equilibria is subject to rather stringent
bounds on the equilibrium payoffs. Specifically, if the sum of all players’ payoffs is
equal to 1, the Nash equilibrium payoff of each player must lie in the interval:

� =
[

1

2(n − 1)
,

2

n + 1

]

for an arbitrary number n of players, and for an arbitrary Nash equilibrium (see
Theorem 2). As an implication, in a four-way race, no candidate can get less than
one-sixth of the vote in a Nash equilibrium. This makes one-sixth a useful benchmark
to decide whether to change one’s strategy in a four-way race.

2 Themodel

2.1 Preliminaries

We consider a democratic election scenario in the following way. There are a number
(say n) of political candidates. Each candidate has a political platform. When each
candidate has a distinct platform, candidates can be identified by their political plat-
forms, so that these words can be used interchangeably. Clearly, this is an abstraction,
since there can be more to a candidate than her political platform, even from the point
of view of an election. Further, the official platform can often be different from the
actual platform, or the platform as perceived by the voters.

Platforms are typically multi-dimensional (as we have illustrated in Sect. 1),
although inprevalent political discussions, oneoftendiscusses platforms inone (major)
dimension (or in one dimension at a time), since this simplifies the argument one is
trying to make. Actually, the distortion produced in such analysis is substantial, and
this has long been recognized in the political science literature that has followed since
the uni-dimensional median voter theorem.4

We might describe a platform by a list of issues; when speaking of candidates, one
might use the term attributes instead. Thus, for example, one might specify a platform
by a list of seven major issues, by indicating a candidate’s stand on those seven issues.
Unlike in the economics of location, where there would be fairly clear cut numerical
measures to identify locations of vendors, and prices charged at those locations, the
problem of quantitative representation of political issues can be a substantial one.
On some issues (such as, what should be the magnitude of the capital gains tax),
there might be clear-cut numerical measures to summarize a candidate’s stand on the
issue. But, on others (such as, the extent of gun control), there might not be such
summary measures. However, even in such cases, it is common to use not only ordinal

4 For an extensive discussion of, and empirical evidence on, this issue, see Stokes (1963, pp. 370–371).
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measures (preference for more gun-control to less), but also measures which would
be interpreted as cardinal (strongly opposed to gun control). While being aware of the
abstraction involved, we choose to represent a platform by a point in M dimensional
real space, if there are M clearly defined issues.5

Not all points in M dimensional space may be considered to be platforms. It is
more reasonable to suppose that there is a feasible set of platforms, F , (a subset of
R

M ) which is well understood by the candidates as well as the electorate.6 Because
we need to understand simpler structures first, in order to usefully investigate more
complex and realistic structures later, we simplify by choosing M = 2; whereas M
can in reality take many values, there is a special significance to moving from 1 to
any larger value, including 2. It immediately allows for political situations where
candidates differ on some issues and agree on others. Further, again in the interest of
simplification, we consider the feasible set of platforms F to be a circle (with, say,
origin at (0, 0) and circumference equal to 1), just as represented in Figs. 2, 3, 4, 5,
6, 7 and 8 in Sects. 3 and 4 below. The circle is capable of including fine distinctions
between similar platforms, as well as diametrically opposing platforms.7

We turn now to the electorate. We suppose a voter has preferences over the set of
feasible platforms, in the form of an “ideal platform”, which is best from the voter’s
point of view, other platforms being inferior. A voter votes for the candidate whose
platform is “closest” to the voter’s ideal platform. We define “closest” in terms of the
length of the arc between the voter’s ideal and the candidate’s platform. [We elaborate
on this measure in Sect. 3.1.3].

Finally, we need to consider the distribution of voters, or more precisely, the distri-
bution of the ideal platforms of voters. As an extreme case, consider (in the context of
Fig. 1) that even though there is a lot of variety of feasible platforms on a circle, voters
don’t really care about whether a candidate is pro-establishment or anti-establishment.
They would then be bunched up (in terms of their ideal platforms) at two points on
the circle on the horizontal axis. Because we want to emphasize the importance of
multi-dimensional platforms, we do not wish to investigate such extreme cases. A
more reasonable assumption is that the voters ideal platforms are distributed with full
support on the circle. Assuming a uniform distribution on the circle (which we do in
our model below) is a useful place to start to keep the model tractable.

5 The list of important issues can of course change over time. So, the same “fixed structure” [to use the
terminology of Stokes (1963)] might not be applicable at different points in time (political eras).
6 This is not an innocent supposition. Stokes (1963, p. 370) notes: “What is more, when our respondents
are asked directly to describe the parties in terms of the liberal-conservative distinction, nearly half confess
that the terms are unfamiliar. And the bizarre meanings given the terms by many of those who do attempt
to use them suggest that we are eliciting artificial answers that have little to do with the public’s everyday
perceptions of the parties.”
7 The circle has been an object of intellectual interest from pre-Socratic and pre-Pythagorean times. It was
analyzed in some depth by Thales of Miletus. Born in Miletus in Asia Minor (currently Turkey), in 624 BC,
he was 54 years senior to Pythagoras, and is often regarded as the first “Greek philosopher” that proved
some theorems concerning right-angled triangles and the circle, using pure deductive reasoning. In that
tradition, quite apart from its implications for electoral politics and location economics, this paper may be
viewed as an exercise in pure abstract reasoning.

123



Individual preferences and democratic processes: two theorems…

2.2 Description of the game

There are n players (political candidates). Each player has to set up a platform at
some point on the circle (with origin at (0, 0) and circumference equal to 1). Each
voter has an ideal platform on the circle and votes for the candidate whose platform is
closest to his own. If a voter is equi-distant to several players’ locations, he chooses
randomly from them by assigning equal probability to each of those players. There
is a continuum of voters, and their ideal platforms are distributed uniformly on the
circle.

Each player’s (political candidate’s) payoff is equal to the expected number of
voters who vote for her and her aim is to maximize her expected payoff.

Players choose their platforms simultaneously. A choice of platform by each player
will be called an n-tuple of strategies or simply a placement. The aim is to analyze
the Nash equilibria of this game, that is a placement such that no player can do better
(increase her payoff) through a unilateral deviation to another platform.

It is useful to coin a few more terms before we begin the analysis. A placement in
which there is no platform that is chosen by more than one player will be referred to as
a scattered placement. All other kinds of placements are called clustered placements.
Given a placement, a stretch of the circle where no platform has been chosen by any of
the players will be called an empty stretch. A Nash equilibrium in which the placement
is scattered will be called a scattered Nash equilibrium. All other Nash equilibria are
called clustered Nash equilibria.

3 Scattered Nash equilibria

This section provides a complete characterization of scatteredNash equilibria. If n = 2
it is easy to see that all placements are Nash equilibria. Henceforth, andwithout further
mention, we will focus on cases where n ≥ 3.

3.1 Notation and definitions of concepts

Recall that we want to present a criterion, such that given a placement, the criterion
can be used to easily check whether the placement is (or is not) a Nash equilibrium.
For this purpose, some notation is needed to formalize the concepts introduced above.

3.1.1 Circle and arcs

Weconsider a circlewith circumference equal toC .8 An arc of a circle is any connected
set of points of the circle.Associatedwith any arc are its boundary points. Theboundary
points need not belong to the arc itself; for example, the arc can be open relative to
the circle. If the closure of the arc is not the entire circle, it will have two boundary
points.

8 This circumference is specified precisely, as soon as we pick a radius of the circle, a positive real number.
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Given any two distinct points A and B on the circle, two arcs can be associated
with them. One arc is the set of points traversed as one moves from A to B clockwise;
we denote this by arc[A, B]. [This set will be understood to include the points A
and B].The other arc is the set of points traversed as one moves from A to B counter
clockwise. This is, of course, the same as the set of points traversed as one moves from
B to A clockwise. We denote this by arc[B, A]. The set arc[A, B]\{A, B} is denoted
by arc(A, B). Similar obvious notation applies to arcs containing B, but not A, and
to arcs containing A, but not B. Note that arc(A, B) is disjoint from arc[B, A], and
therefore from arc(B, A), arc(B, A] and arc[B, A).

The arc length of arc[A, B] is defined to be equal to (Cθ/360), if θ is the angle (in
degrees) which arc[A, B] subtends at the centre of the circle. This is also defined to be
the arc length of arc(A, B).The arc length of arc[A, B] is denoted by a[A, B].9When
the two arc lengths a[A, B] and a[B, A] are not equal, the arc with the larger arc length
is called the major arc, and the arc with the smaller arc length is called the minor arc.
Thus, the arc length of the minor arc is min{a[A, B], a[B, A]}, and we denote it by
ma[A, B]; it is also equal to ma[B, A]. In what follows, without loss of generality,
we take the circumference C of the circle to be equal to 1, and therefore the radius of
the circle to be r = (1/2π).

3.1.2 Candidates, platforms and neighborhoods

In a scattered placement, each candidate i ∈ I ≡ {1, . . . , n} can be identified with a
distinct point (platform) on the circle. Thus, the placement itself can be described by
an n-tuple of platforms {s1, . . . , sn}, where each si for i ∈ I is a distinct point on this
circle.10

Given a scattered placement s = {s1, . . . , sn}, there is a neighborhood Yi (s) for
each candidate i ∈ I ≡ {1, . . . , n},which is defined to be the maximal arc, containing
si , but not containing any s j �= si ; that is, it is an arc S, containing si , but not
containing any s j �= si , such that if S′ is any arc, containing si , but not containing any
s j �= si , then S′ ⊂ S.11 As we have defined it, a neighborhood Yi (s) is a set which is
open relative to the circle. The closure of Yi (s) (relative to the circle) is denoted by
Ȳi (s). Thus, Ȳi (s) contains Yi (s) and the boundary points of Yi (s).

Given a scattered placement s = {s1, . . . , sn}, for each candidate i ∈ I ≡
{1, . . . , n}, we can define his neighbors to be:

sR(i) = arg min
s j∈s\{si }

a(si , s j ) and sL(i) = arg min
s j∈s\{si }

a(s j , si ) (NBS)

These are the candidates with platforms closest to the platform of candidate i, on the
right and on the left respectively. Clearly, we have:

sR(i) �= si and sL(i) �= si

9 When the two arc lengths are not equal, the arc with the larger arc length is called the major arc, and the
arc with the smaller arc length is called the minor arc.
10 Each si can be specified precisely in terms of its Cartesian co-ordinates.
11 Note that a neighborhood for player i can be a minor arc, and it can also be a major arc, depending on
the positions of the other players on the circle.
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and the neighbors are distinct:

sR(i) �= sL(i). (DNBS)

The statement in (DNBS) holds because if sR(i) = sL(i), then Ȳi (s) is the circle itself,
implying that there are just two distinct platforms on the circle, and this is impossible
in a scattered placement with n ≥ 3.

Using (NBS), it can be shown that:

Yi (s) = arc(sL(i), sR(i)) and Ȳi (s) = arc[sL(i), sR(i)]. (NBD)

Informally, the set Ȳi (s) contains the platforms of i ′s “nearest” neighbors, while Yi (s)
does not. (NBD) is a useful characterization of a neighborhood; we make use of this
characterization in our analysis below. We define yi (s) to be the arc length of the arc
Yi (s).

3.1.3 Behavior of voters

Each voter has an ideal platform, v, a point on the circle. The general principle that we
wish to use with respect to voting behavior is that each voter votes for the candidate
whose platform is “closest” to her ideal platform v. To implement this principle, we
need to be explicit about what “closest” means.

However, without specifying a particular distance function, we can say that a nec-
essary condition for the voter to vote for platform si (of candidate i) is that there be an
arc joining v with si (either arc(v, si ) or arc(si , v)) which contains no other platform
s j (for j �= i). For if there is always some platform s j in between v and si (that is,
there is some s j in arc(v, si ) and there is some sk in arc(si , v) ), then si cannot be
closest to v by any reasonable notion of closeness.

A consequence of this is that a voter whose ideal platform v falls outside Ȳi (s) will
definitely not vote for candidate i, since sL(i) is in arc(v, si ) and sR(i) is in arc(si , v).

So, the only voters who can possibly vote for candidate i are those whose ideal
platform v falls in Ȳi (s). If v ∈ (si , sR(i)], we postulate that the voter votes for si
when a(si , v) < a(v, sR(i)], votes for sR(i) when a(si , v) > a(v, sR(i)], and votes for
either platform with equal probability when a(si , v) = a(v, sR(i)]. A similar rule is
postulated if v ∈ [sL(i), si ); that is, the voter votes for si when a(v, si ) < a[sL(i), v),

votes for sL(i) when a(v, si ) > a[sL(i), v), and votes for either platform with equal
probability when a(v, si ) = a[sL(i), v). Finally, if v = si , then the voter votes for si .

Unlike the economics of location of vendors, and customers purchasing from the
nearest vendor, where the above postulate would be entirely natural, it is a debatable
postulate in electoral politics. The use of the arc length is not itself central to a possible
objection to the postulate. It is the fact that a clockwise arc length is compared to an
anti-clockwise arc length in deciding on voting behavior. If, for example, a voter
always seeks the closest platform, moving in a clockwise direction from his ideal
platform, then this postulate of voting behavior would not hold. Because closeness
of a platform to another platform is primarily a mental concept, without a convenient
physical counterpart, the analogy with spatial location theory need not carry over.
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3.1.4 Payoffs of candidates

Given the postulate of voting behavior, and the assumption that the ideal platforms
of voters are uniformly distributed on the circle, the payoff pi (s) of candidate i is
one-half the arc length of Yi (s); that is, pi (s) = yi (s)/2. It measures the percentage
of the votes that candidate i expects to get.

In studying scattered Nash equilibria, it is important to be able to deal with some
clustered placements. This is because, for each player, one has to consider all unilateral
deviations in platforms from her given platform (in the scattered placement). Consider
a scattered placement {s1, . . . , sn}, and focus on player i . Player i can consider a
unilateral deviation to a platform s′

i . Now s′
i can coincide with sk for some k �= i .

Thus, after such a deviation, we have a clustered placement, and one must be able
to compute the payoff to player i from such a deviation and compare that payoff
to her payoff from the scattered placement {s1, . . . , sn}.12 To see how this is done,
notice that after such a unilateral deviation by player i, we have a clustered placement
s′ = {s1, ., s′

i , .., sn} and we can define a neighborhood Yi (s′) as above to be the
maximal arc, containing s′

i , but not containing any s j �= s′
i . Note that Yk(s

′) coincides
with Yi (s′). The arc length of Yi (s′) is denoted by yi (s′). The payoff to player i in the
new placement s′ is defined to be pi (s′) = yi (s′)/4, since both i and k have to share
the same neighborhood Yi (s′) in the placement s′.

3.2 Characterizing scattered Nash equilibria

Given a scattered placement s = {s1, . . . , sn}, an empty stretch is any arc that does
not contain any si for i ∈ {1, . . . , n}. The arc length of the empty stretch of maximum
arc length is denoted by x(s). We define:

y(s) = min{y1(s), . . . , yn(s)}.

A characterization of scattered Nash equilibria can be obtained by just comparing y(s)
with x(s).

Theorem 1 (A) Given a scattered placement s = {s1, . . . , sn}, if:

y(s) ≥ x(s) (1)

then the placement is a Nash equilibrium.
(B) Given a scattered placement s = {s1, . . . , sn}, if:

y(s) < x(s) (2)

then the placement is not a Nash equilibrium.

12 Note that the deviation can result in two players (but not more) being at the same location, since the
original placement is scattered.
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Proof (A) Pick any j ∈ I , and fix it in what follows. By (1), and the definition of
y(s), we have:

p j (s) = (y j (s)/2) ≥ (x(s)/2). (3)

Suppose j unilaterally changes his platform from s j to some other point s′
j on the

circle. Denote the new placement created by s′ = {s1, . . . , s′
j , . . . , sn}.We have either

(a) s′ is a scattered placement, or (b) s′ is a clustered placement.

Case (a): If s′
j ∈ Y j (s), then the payoff of j does not change. If s′

j is not in Y j (s),
then since s′ is a scattered placement, s′

j ∈ Yk(s), the neighborhood of some other
player k ∈ I (with k �= j). The neighborhood Yk(s) consists of two empty stretches,
and the new neighborhood of s′

j will have to be one of these two empty stretches (no
longer empty after it is occupied by s′

j ). Thus, we must have y j (s′) ≤ x(s), and so:

p j (s
′) ≤ (x(s)/2). (4)

Clearly, (3) and (4) imply that there is no incentive for j to change his platform to s′
j .

This establishes that the placement s is a Nash equilibrium in case (a).

Case (b): In this case, there is some k ∈ I , with k �= j, such that sk = s′
j . There

are two subcases to consider: (I) Y j (s) is disjoint from Ȳk(s); (II) Y j (s) ∩ Ȳk(s) is
non-empty. In subcase (I),

Yk(s
′) = Yk(s) (5)

and so Y j (s′) = Yk(s).13 The neighborhood Yk(s) contains two empty stretches, and
the point sk . Thus, yk(s) ≤ 2x(s), and we get:

p j (s
′) = y j (s

′)/4 = yk(s)/4 ≤ 2x(s)/4 = (x(s)/2). (6)

Clearly, (3) and (6) imply that there is no incentive for j to change his platform to s′
j .

This establishes that the placement s is a Nash equilibrium in case (b)(I).
In subcase (II), Y j (s) ∩ Ȳk(s) is non-empty. Let us write:

Yk(s) = arc(sL(k), sR(k)) and Y j (s) = arc(sL( j), sR( j)). (7)

We now claim14 that:

Either (i) s j = sL(k) and sR( j) = sk; or (ii) sk = sL( j) and sR(k) = s j . (8)

13 While the claim (5) is intuitively clear, it takes a bit of work to establish this analytically. It is included
in an Appendix.
14 Claim (8) is intuitively clear, but it takes a bit of work to establish this analytically. It is included in an
Appendix.
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Taking the claim for granted, we can proceed to complete the proof of case (b)(II)
as follows. In case (i) of (8), after candidate j changes his platform from s j to s′

j = sk,
the entire arc(sL( j), s j ] becomes part of the neighborhood of player j , in addition to
Yk(s). That is,

Y j (s
′) = arc(sL( j), s j ] ∪ Yk(s)

= arc(sL( j), sL(k)] ∪ arc(sL(k), sR(k))

= arc(sL( j), sL(k)] ∪ arc(sL(k), sk) ∪ arc[sk, sR(k))

= arc(sL( j), sL(k)] ∪ arc(sL(k), sR( j)) ∪ arc[sk, sR(k))

= arc(sL( j), s j ] ∪ arc(s j , sR( j)) ∪ arc[sk, sR(k))

= Y j (s) ∪ arc[sk, sR(k)) (9)

where we have used (8)(i) in lines 2,4 and 5 of (9). [This is also the new neighborhood
Yk(s′) of player k].

Since arc(sk, sR(k)) is one of the two empty stretches of Yk(s), its arc length is at
most x(s), and so the arc length of arc[sk, sR(k)) is also at most x(s). The arc length
of Y j (s) is y j (s). Thus, the arc length of Y j (s′) is ≤ x(s) + y j (s). Consequently,

p j (s
′) ≤ [x(s) + y j (s)]/4 ≤ 2y j (s)/4 = y j (s)/2 (10)

where the second inequality in (10) follows from (1). Clearly, (3) and (10) imply
that there is no incentive for j to change his platform to s′

j . This establishes that the
placement s is a Nash equilibrium, when case (i) of claim (8) holds.

If case (ii) of claim (8) holds, the proof is similar to the one just given for case (i) of
claim (8). This establishes that the placement s is a Nash equilibrium in case (b)(II),
and completes the proof of part (A) of the theorem.

(B) By (2), and the definition of y(s), there is h ∈ I , such that yh(s) = y(s) < x(s).
Then:

ph(s) < (x(s)/2). (11)

Now h can relocate from platform sh to a platform s′
h (say) in an empty stretch with

arc length x(s). Then the new neighborhood of h is the empty stretch with arc length
x(s) (no longer empty after it is occupied by s′

h). Consequently,

ph(s
′) = (x(s)/2). (12)

Clearly, (11) and (12) imply that h can increase her payoff by a unilateral deviation
from platform sh to platform s′

h . So, the (original) placement s cannot be a Nash
equilibrium. This completes the proof of part (B) of the theorem. ��

A consequence of Theorem 1 is the following result, which provides a sufficient
condition for a scattered placement s to be a Nash equilibrium. Note that, to use this
criterion, one does not need to calculate y(s).
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Corollary 1 Given a scattered placement s = {s1, . . . , sn}, if:

x(s) ≤ 1

n − 1
(13)

then the placement s is a Nash equilibrium.

Proof We claim that:

y(s) ≥ x(s). (14)

Suppose, on the contrary that y(s) < x(s). Then, there is j ∈ I such that:

y j (s) = y(s) < x(s). (15)

Since x(s) is the arc length of the largest empty stretch, we can find a set of points
X(s) which is an empty stretch, with arc length x(s). [There could be several such
sets; we are picking one and calling it X(s)].

Using (13) and (15), we get:

x(s) + y j (s) < 2x(s) ≤ 2

n − 1

and so:

1 − x(s) − y j (s) > 1 − 2

n − 1
= n − 3

n − 1
≥ 0. (16)

If the neighborhood Y j (s) overlaps with X(s) (that is Y j (s) ∩ X(s) �= φ), then
X(s) must be a subset of Y j (s), and consequently y j (s) ≥ x(s), contradicting (9).
Thus, Y j (s) does not overlap with the empty stretch X(s), with arc length x(s).

Note that Y j (s) consists of two empty stretches (and the point s j ) and neither one
overlaps with X(s). If n = 3, then there are no other empty stretches and we must
have y j (s) + x(s) = 1, but this contradicts (16). Thus, we must have n > 3 and there
are a total of (n − 3) empty stretches remaining (other than X(s) and the two empty
stretches in Y j (s)). Let z(s) be the maximum of the (arc) lengths of these remaining
empty stretches. Consequently,

(n − 3)z(s) ≥ 1 − x(s) − y j (s). (17)

Using (16) in (17), we obtain:

z(s) >
1

n − 1
. (18)

Clearly, (18) contradicts (13) and establishes our claim (14).
Now, the result follows directly from Theorem 1. ��
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Fig. 2 Illustration of Theorem 1(A)

3.2.1 Geometric illustration for n = 3

To hone our intuition for the analysis used in Theorem 1, it is useful to consider the
special case of n = 3.

Considered the scattered placement described in Fig. 2.
It is easy to see no player can do better by shifting platform on the same stretch

(strictly) between the other two players. Note, for instance that player 1will get exactly
half the votes on the clockwise stretch traversed from her platform s1 to the platform
s3 of player 3 and, likewise, half the votes on the anti-clockwise stretch traversed from
her platform s1 to the platform s2 of player 2. In other words, player 1 gets half the
votes on the stretch of rotary between s2 and s3 on the side where s1 is located. Since
this makes no mention of where s1 is located on this stretch, any movement by player
1, where she remains on the same side of the rotary leaves her payoff unchanged.
[Analytically, we expressed this above by saying that if s1 is located anywhere on the
arc(s2, s3), then her payoff remains the same; this is the arc traversed as one moves
from s2 to s3 in a clockwise direction].

Hence to check if a scattered placement is a Nash equilibrium all we have to check
is if any player is better off by relocating her platform to another empty stretch. For
instance, can player 1 do better by changing her platform to the southern stretch
of rotary between s2 and s3? [Analytically, we expressed this above by analyzing
whether player 1 can do better by relocating from platform s1 to some platform s′

1
on the arc(s3, s2); this is the arc traversed as one moves from s3 to s2 in a clockwise
direction]. Clearly, in Fig. 2, the southern stretch of rotary between s2 and s3 is less
than (1/2), and so player 1 cannot do better by such a relocation of her platform.
Given the symmetry of the locations of the three players, the same argument applies
to players 2 and 3 as well. So, the placement in Fig. 2 is a Nash equilibrium.

123



Individual preferences and democratic processes: two theorems…

Fig. 3 Illustration of Theorem 1(B)

Now consider the case where the empty stretch arc(s3, s2) is more than (1/2). This
is illustrated in Fig. 3.

It is obvious that such a placement cannot be Nash, since player 1 can shift her
platform from s1 in the north connector between s2 and s3 to s′

1 in the south connector
between s2 and s3.

3.3 Symmetric and asymmetric scattered Nash equilibria

Corollary 1 has the following implication, which might be of interest. In the equally
spaced case, the longest empty stretch is (1/n), and therefore such a scattered place-
ment is a Nash equilibrium. So, for all placements sufficiently close to the equally
spaced case, x is close to (1/n), and therefore less than [1/(n − 1)]. Thus, all such
scattered placements are also Nash equilibria by Corollary 1. That is, there is a con-
tinuum of scattered Nash equilibria, clustered around the equally spaced placement.

The fact that the players have no distinctive features ex ante (they can choose
platforms anywhere on the circle, and once located the same payoff rule applies to
all of them) does not, of course, mean that they receive the same or even similar
payoffs in a Nash equilibrium. In fact, distinctly asymmetric Nash equilibria can arise
in this model. We begin by describing an example with three players, which can be
instructive.

3.3.1 The advantage of appearing different

Example 1 With Cartesian co-ordinates, consider the center of the circle to be at (0, 0).
There are three players, and the scattered placement s is described as follows. The
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Fig. 4 Scattered Nash equilibrium (Example 1)

platform of player 1 is located at (r , 0), where r = (1/2π). The platforms of players
2 and 3 are located near (−r , 0), with the platform for 2 slightly above the axis on
the circle, and the platform for 3 symmetrically slightly below the axis on the cir-
cle (see Fig. 4). To be precise, the platform of 2 is located at (−(a2 − ε2)1/2, ε)

and the platform of 3 is located at (−(a2 − ε2)1/2,−ε), where 0 < ε < a,

and we are to suppose that ε is close to zero. That is, candidates 2 and 3 are
very alike in their platforms, while candidate 1 is very different from either one of
them.

Note that yi (s) exceeds (1/2) for all i ∈ I = {1, 2, 3}, and x(s) is smaller than
(1/2). Thus, s is a Nash equilibrium by Theorem 1. [In fact, Corollary 1 can also be
applied directly in this case to reach this conclusion]. Now, notice that as ε → 0,
we have the payoff of player 1 approaching (1/2), as her neighborhood approaches
the entire circle, while the payoffs of players 2 and 3 approach (1/4). There is a big
advantage from appearing different.

3.3.2 The distribution of payoffs in scattered Nash equilibria

It is a rather remarkable fact that the simple example just discussed illustrates a general
result on the distribution of payoffs inNash equilibria in thismodel. Non-uniqueness of
Nash equilibria is the major drawback in its predictive power regarding the outcome of
the game. In our next result, instead of focusing on equilibrium locations of platforms,
we shift our focus to equilibrium payoffs, and we find that these are subject to rather
stringent bounds. Specifically, the Nash equilibrium payoffs of all players must lie in
the interval:
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� =
[

1

2(n − 1)
,

2

n + 1

]
(DOP)

for an arbitrary number n of players, and for an arbitrary Nash equilibrium.
As an implication, in a four-way race, no candidate can get less than one-sixth of

the vote in a scattered Nash equilibrium. This makes (1/6) a useful benchmark to
decide whether to change one’s strategy (platform). That is, it is all right to get less
than a quarter of the vote (perform worse than average), but it is not all right to get
less than a sixth of the vote.15

We now proceed to establish the formula (DOP) using Theorem 1.

Proposition 1 If a scattered placement s = {s1, . . . , sn} is a Nash equilibrium, then:

1

2(n − 1)
≤ pi (s) ≤ 2

n + 1
for all i ∈ I = {1, . . . , n}. (19)

Proof Given the scattered placement s = {s1, . . . , sn}, recall that the arc length of the
empty stretch of maximum arc length is denoted by x(s), and we define:

y(s) = min{y1(s), . . . , yn(s)}; z(s) = max{y1(s), . . . , yn(s)}.

Note that, given the scattered placement s = {s1, . . . , sn}, there are n empty
stretches. Each empty stretch is contained in the neighborhoods of two distinct players.
Since the arc lengths of the n empty stretches must add up to 1 (the circumference of
the circle), the arc lengths of the neighborhoods of the n players must add up to 2;
that is:

n∑
i=1

yi (s) = 2. (20)

There is k ∈ I = {1, . . . , n} such that yk(s) = z(s). Since Yk(s) consists of two
empty stretches (and the point sk), we have:

z(s) = yk(s) ≤ 2x(s). (21)

15 It might be difficult for a candidate to change his platform significantly, given his ideological beliefs.
On a more pragmatic note, significant changes in platform by a candidate to suit an election might not be
taken seriously by voters, who might rightly view it as an opportunistic move. In such cases, (1/6) would
also be a useful benchmark to decide whether to quit a race.
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Using (20) and (21), and Theorem 1, we get:

2 = z(s) +
∑
i �=k

yi (s)

≥ z(s) + (n − 1)x(s)

≥ z(s) + (n − 1) [z(s)/2]

= z(s)

[
1 + n − 1

2

]

= z(s)

[
n + 1

2

]
(22)

where we used (20) in line 1, Theorem 1 in line 2 and (21) in line 3. This yields:

z(s) ≤
[

4

n + 1

]

so that:

pi (s) ≤ pk(s) = [z(s)/2] ≤
[

2

n + 1

]
for all i ∈ I . (23)

This establishes the right-hand inequality in (19).
We proceed now to establish the left-hand inequality in (19). Note that by using

(21) and Theorem 1, we have:

z(s) = yk(s) ≤ 2x(s) ≤ 2y(s). (24)

There is j ∈ I = {1, . . . , n} such that y j (s) = y(s). The neighborhood Y j (s)
consists of two empty stretches (and the point s j ).Call these empty stretchesY j1(s) and
Y j2(s).The corresponding arc lengths can bewritten as [y j (s)/2]+ε and [y j (s)/2]−ε,

where −[y j (s)/2] < ε < [y j (s)/2]. The empty stretch Y j1(s) must be shared with
another player r �= j; that is, Y j1(s) must be one of the two empty stretches of Yr (s),
the neighborhood of player r . Similarly, empty stretch Y j2(s)must be shared with
another player t �= j, r; that is, Y j2(s) must be one of the two empty stretches of
Yt (s), the neighborhood of player t . Using (20), we can now write:

2 = y j (s) + yr (s) + yt (s) +
∑

i �= j,r ,t

yi (s)

≤ y j (s) + yr (s) + yt (s) + (n − 3)z(s)

≤ y j (s) + {[y j (s)/2] + ε + x(s)} + {[y j (s)/2] − ε + x(s)} + (n − 3)z(s)

= 2y j (s) + 2x(s) + (n − 3)z(s)

≤ 2y(s) + 2y(s) + (n − 3)z(s)

≤ 2y(s) + 2y(s) + 2(n − 3)y(s) (25)
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where we have used Theorem 1 in line 5 and (24) in line (6) of (25). Thus, we obtain:

y(s) ≥ 2

2n − 2
= 1

n − 1
. (26)

Using (6), we have:

pi (s) ≥ p j (s) = [y(s)/2] ≥
[

1

2(n − 1)

]
for all i ∈ I

which establishes the left-hand inequality in (19). ��

Remark In the context of Example 1 with n = 3, we see that the lower bound of 25%
in (19), and the upper bound of 50% in (19) are approached as we let ε → 0.

4 Clustered Nash equilibria

To analyze clustered Nash equilibria, it is useful to have a more general set-up of the
framework of Sect. 3, which will include all placements, including both scattered and
clustered placements.

Consider as before that there are n ≥ 3 players. A placement will be described by
(m, s, t) where m ≤ n is a positive integer, s = {s1, . . . , sm} an m-tuple of distinct
points16 on the circle (with circumference equal to 1), and t = {t1, . . . , tm} anm−tuple
of positive integers, with t1 + · · · + tm = n. In the placement c = (m, s, t), there are
m locations on the circle which represent distinct platforms. For i ∈ J = {1, . . . ,m},
there are ti candidates who share the platform si . A scattered placement is a special
case, where m = n, and ti = 1 for each i ∈ J . Concepts related to this framework
can be defined as in Sect. 3.1, but with a few differences which justify our going over
these concepts again.

Given a placement c = (m, s, t), with m ≥ 2, there is a neighborhood Yi (c) for
each platform si , where i ∈ J ≡ {1, . . . ,m}, which is defined to be the maximal arc,
containing si , but not containing any s j �= si .

Note that the subscript i in Yi (c) keeps track of the platform si , and not a particular
candidate who has announced platform si . All candidates sharing the same platform
si have the same neighborhood Yi (c). Note also the qualification m ≥ 2 in the above
definition. If m = 1, then all platforms are identical, and the neighborhood for each
candidate announcing the only platform is the entire circle.

As in Sect. 3.1, a neighborhood is an arc, and we define yi (c) to be the arc length
of this arc. As we have defined it, when m ≥ 2, a neighborhood Yi (c) is a set which
is open relative to the circle. The closure of Yi (c) (relative to the circle) is denoted by
Ȳi (c). Thus, Ȳi (c) contains Yi (c) and the boundary points of Yi (c).

16 Each si can be specified precisely in terms of its Cartesian co-ordinates.
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Given a placement c = (m, s, t), with m ≥ 2, for each platform si (with i ∈ J ),

we can define the neighboring platforms by:

sR(i) = arg min
s j∈s\{si }

a(si , s j ) and sL(i) = arg min
s j∈s\{si }

a(s j , si ). (NBS)

Clearly, we have:

sR(i) �= si and sL(i) �= si .

Unlike in Sect. 3.1, it is possible to have sR(i) = sL(i). [In this case, there are exactly
two distinct platforms].

Using (NBS), it can be shown that when m ≥ 2,

Yi (c) = arc(sL(i), sR(i)) and Ȳi (c) = arc[sL(i), sR(i)]. (NBD)

When m ≥ 2, the payoff pi (c) of each candidate who has announced the platform
si (with i ∈ J ) is:

pi (c) = yi (c)

2ti
. (PO)

When m = 1, there is exactly one platform and the payoff p(c) of each candidate is:

p(c) = 1

n
. (PO1)

4.1 An example of clustered Nash equilibrium

We start by providing an example of a clustered Nash equilibrium. This can be viewed
as a limiting version of Example 1.

Example 2 With Cartesian co-ordinates, consider the center of the circle to be at (0, 0).
There are three players, and the placement c = (m, s, t) is described as follows. The
platform of player 1 is s1 = (r , 0). Players 2 and 3 have the same platform, specified
by s2 = (−r , 0). Thus, we have m = 2, s = {s1, s2} and t = {t1, t2} = {1, 2}. This
placement is illustrated in Fig. 5.

Here we have y1(c) = 1, y2(c) = 1, and so p1(c) = (1/2), while the payoff
of each player who have announced the same platform s2 is p2(c) = (1/4). We can
check that c is a Nash equilibrium by using the following elementary analysis.

A unilateral deviation by any player will create a new placement c′ = (m′, s′, t ′),
where the platforms of the other two players remain the same as in the placement c.
If player 1 changes his platform to s′

1 �= s2, his neighborhood remains the same as in
c, and his payoff remains (1/2). If s′

1 = s2, then his neighborhood remains the same
as in c, but his payoff becomes (1/3). So, clearly, player 1 has no incentive to deviate
from s1.
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Fig. 5 Clustered Nash equilibrium (Example 2)

Consider next a unilateral deviation by player 2 from her original platform of s2
to a new platform s′

2 �= s2. If s′
2 �= s1, her new neighborhood is the semi-circle, and

so her new payoff is (1/4). If, on the other hand, s′
2 = s1, then her neighborhood is

the full circle, and her payoff is again (1/4). So, clearly, player 2 has no incentive to
deviate from s2. Similarly, player 3 has no incentive to deviate from s2.

4.2 General properties of Nash equilibria

We now proceed to establish four general properties of Nash equilibria. Given that we
already have a complete characterization of scattered Nash equilibria in Sect. 3, the
focus of three of these properties is on clustered Nash equilibria.

First, in any clustered Nash equilibrium, there cannot be more than two candidates
announcing the same platform. That is, for any Nash equilibrium placement c =
(m, s, t), we must have ti ∈ {1, 2} for all i ∈ J . This implies that m ≥ 2 (since we
have n ≥ 3).

Second, if c = (m, s, t) is a clusteredNash equilibrium, and there are twocandidates
who have announced the same platform s j , then s j must be precisely at the mid-point
of its neighborhood Y j (c).

Third, the analogue of part (B) of Theorem 1 is valid for all Nash equilibria. To
describe it, let us define two key concepts. Given a placement c = (m, s, t), an empty
stretch is any arc that does not contain any si for i ∈ J . The arc length of an empty
stretch of maximum arc length (among all empty stretches) is denoted by x(c). We
define for m ≥ 2,

y(c) = min

{
y1(c)

t1
, . . . ,

ym(c)

tm

}
.
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If c = (m, s, t) is any Nash equilibrium, then it must be the case that y(c) ≥ x(c).
Fourth, if c = (m, s, t) is any clustered Nash equilibrium, then it must be the case

that y(c) = x(c).

Proposition 2 If a placement c = (m, s, t) is a Nash equilibrium, then the following
properties must hold:
(i) ti ∈ {1, 2} for all i ∈ J , and m ≥ 2.
(ii) For each location si with ti = 2, si must be at the mid point of its neighborhood

Yi (c).
(iii) y(c) ≥ x(c).
(iv) If the placement c is clustered, then y(c) = x(c); further, for each location si

with ti = 2, each of the two empty stretches of Yi (c) has arc length x(c).

Proof (i) Let c = (m, s, t) be a Nash equilibrium placement. Suppose there is some
platform s j which has been announced by k ≥ 3 candidates.

First consider the case where k = n; that is, all players have announced the same
platform. Then the neighborhood of each player is the entire circle, and the payoff
to each player is (1/n). If one player deviates to another platform she will still have
the entire circle as her neighborhood, but her payoff will be (1/2). Since n ≥ 3, a
deviation is worthwhile. Hence c is not a Nash equilibrium.

Now suppose 3 ≤ k < n, so that m ≥ 2. The neighborhood of each player who
has announced platform s j is Y j (c), and the payoff of each player who has announced
platform s j is p j (c) = y j (c)/2t j = y j (c)/2k. The neighborhood Y j (c) consists of
two empty stretches (and the point s j ). Call these empty stretches Y j1(c) and Y j2(c).
Comparing the arc lengths of these empty stretches, pick an empty stretch whose arc
length is not smaller than the arc length of the other empty stretch, and call it Y j1(c)
(without loss of generality).

If one of the k players who has announced platform s j deviates to a platform
s′
j ∈ Y j1(c), then this player’s neighborhood becomes Y j1(c) and so this player’s

payoff becomes half the arc length of Y j1(c), which will therefore be greater than or
equal to [y j (c)/4]. Since k ≥ 3,

y j (c)

4
>

y j (c)

2k
.

Hence, the player benefits bydeviating from s j to s′
j .So c cannot be aNash equilibrium.

This establishes that ti ∈ {1, 2} for all i ∈ J . If m = 1, then there would be at least
three players who announce the same platform, since n ≥ 3. But this is ruled out by
the property just established. Thus, we must have m ≥ 2.

(ii) Let c = (m, s, t) be a Nash equilibrium placement. Suppose there is some
platform s j which has been announced by t j = 2 players. The neighborhood of each
player who has announced platform s j is Y j (c), and the payoff of each player who
has announced platform s j is p j (c) = y j (c)/2t j = y j (c)/4. The neighborhood Y j (c)
consists of two empty stretches (and the point s j ). Call these empty stretches Y j1(c)
and Y j2(c). Suppose the arc lengths of these two empty stretches are not the same.
Pick the empty stretch whose arc length is the larger of the two, and call it Y j1(c)
(without loss of generality).

123



Individual preferences and democratic processes: two theorems…

If one of the 2 players who has announced platform s j deviates to a location s′
j ∈

Y j1(c), then this player’s neighborhood becomes Y j1(c) and so this player’s payoff
becomes half the arc length of Y j1(c), which will therefore be greater than [y j (c)/4].
Hence, the player benefits bydeviating from s j to s′

j .So c cannot be aNash equilibrium.
This establishes that the arc lengths of Y j1(c) and Y j2(c) must be the same. That is,
s j must be at the mid point of its neighborhood Y j (c).

(iii) Let c = (m, s, t) be a Nash equilibrium placement. Suppose y(c) < x(c). By
the definition of y(c), there is some platform sh (with h ∈ J ) such that yh(c)/th =
y(c) < x(c). Then the payoff of each player who has announced platform sh is:

ph(c) = yh(c)/2th < (x(c)/2).

Now a player (who has announced platform sh) can relocate from sh to a platform s′
h

in an empty stretch with arc length x(c). Then the new neighborhood of this player
is the empty stretch with arc length x(c) (no longer empty after it is occupied by this
player). Consequently, the new payoff to this player is (x(c)/2). Hence, this player
benefits by deviating from s j to s′

j . So, the placement c cannot be a Nash equilibrium.
This contradiction establishes that y(c) ≥ x(c).

(iv) Let c = (m, s, t) be a Nash equilibrium placement, where the placement is
clustered. Then, there is some platform sh (with h ∈ J ) which has been announced
by more than one player. By (i), there are two players who have announced platform
s j . Thus, by definition of y(c), we have:

y j (c)

2
≥ y(c) ≥ x(c) (27)

where the second inequality in (27) follows from the result (iii).
The neighborhood of each player who has announced platform s j is Y j (c), and

Y j (c) consists of two empty stretches (and the point s j ).Thus,

y j (c) ≤ 2x(c). (28)

Combining (27) and (28), we obtain:

y j (c)

2
≥ y(c) ≥ x(c) ≥ y j (c)

2
(29)

so that equality must hold in place of each inequality in (29). Thus, y(c) = x(c) must
hold. Further, y j (c) = 2x(c), so by result (ii), each of the two (equal) empty stretches
of Y j (c) constitutes a largest empty stretch in the placement c. ��
Remark Result (i) in Proposition 2 sheds interesting light on the median voter theo-
rem which says that, when the available platforms are points on a straight line, two
candidates will invariably choose the same platform (the median). What Example 2
and Proposition 2(i) show is that in an electoral democracy with voter preference on
a circle of available platforms, two candidates may choose the same political agenda,
but there will never be three candidates doing so.
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4.3 A property of clustered Nash equilibria

Results (i), (ii) and (iv) of Proposition 2 place rather strong restrictions on clustered
Nash equilibria. If n = 3 and c = (m, s, t) is a clustered Nash equilibrium, then there
must be precisely two platforms. One candidate would announce one platform; call
this s1. The other two candidates would both announce a distinct platform, s2. Given
the platform s2, property (ii) of Proposition 2 demands that it be at the mid-point
of its neighborhood. This implies that s1 must be diametrically opposite to s2 on the
circle. In other words, Example 2 is essentially the only example of a clustered Nash
equilibrium when n = 3. In particular, the distribution of payoffs in any clustered
Nash equilibrium must be:

� =
{
1

4
,
1

4
,
1

2

}
.

More generally, for arbitrary n ≥ 3, we note the following property for clustered
Nash equilibria,which should be compared toCorollary 1 for scatteredNash equilibria.
It is a useful propertywhich is helpful in studying the distribution of payoffs in arbitrary
Nash equilibria, which we take up in the next subsection.

Corollary 2 If a placement c = (m, s, t) is a clustered Nash equilibrium, then:

x(c) ≥ 1

n − 1
. (30)

Proof Given the placement c = (m, s, t), there are m empty stretches. Since the arc
lengths of the m empty stretches must add up to 1 (the circumference of the circle),
we must have:

mx(c) ≥ 1. (31)

Since the placement c = (m, s, t) is a clustered Nash equilibrium, there is at least
one platform sk, which is announced by multiple candidates; by Proposition 2(i), we
know in fact that there are precisely two candidates who announce the platform sk .
The remaining (n−2) candidates announce the remaining (m−1) platforms. In order
that each of the remaining (m − 1) platforms is announced by at least one candidate
each, we must have:

n − 2 ≥ m − 1

and consequently n − 1 ≥ m. Using this in (31), we obtain (30). ��

4.4 Distribution of payoffs in Nash equilibria

We now present a generalization of Proposition 1, extending that result to all Nash
equilibria. It will be noted that in our result, the bounds on the payoffs are determined
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in terms of n, the number of players (candidates), and independent of m, the number
of platforms announced in a Nash equilibrium. Thus, one needs no information about
the equilibrium placements to make use of the bounds.

Theorem 2 If a placement c = (m, s, t) is a Nash equilibrium, then:
1

2(n − 1)
≤ pi (c) ≤ 2

n + 1
for all i ∈ J = {1, . . . ,m}. (DOP’)

Proof Given the placement c = (m, s, t), recall that the arc length of the empty stretch
of maximum arc length is denoted by x(c), and we define:

y(c) = min

{
y1(c)

t1
, . . . ,

ym(c)

tm

}
; z(c) = max

{
y1(c)

t1
, . . . ,

ym(c)

tm

}
.

Note that, given the placement c = (m, s, t), there are m empty stretches. Each
empty stretch is contained in the neighborhoods of two distinct platforms. Since the
arc lengths of them empty stretches must add up to 1 (the circumference of the circle),
the arc lengths of the neighborhoods of the m platforms must add up to 2; that is:

m∑
i=1

yi (c) = 2. (32)

There is k ∈ J = {1, . . . ,m} such that (yk(c)/tk) = z(c).By Proposition 2(i), there
are two possibilities (a) tk = 2; (b) tk = 1. In case (a), we know by Proposition 2(iv)
that yk(c) = 2x(c). Thus, we have:

z(c) = yk(c)/tk = 2x(c)/tk = x(c) (33)

and so by definition of z(c),

yi (c)/ti ≤ z(c) = x(c) for all i ∈ J . (34)

But, we also know from the definition of y(c) and Proposition 2(iii) that:

yi (c)/ti ≥ y(c) = x(c) for all i ∈ J . (35)

Thus, we have:

yi (c)/ti = y(c) = z(c) = x(c) for all i ∈ J . (36)

Using (36) in (32), we obtain:

2 =
m∑
i=1

yi (c) =
m∑
i=1

ti

[
yi (c)

ti

]
=

m∑
i=1

ti x(c) = nx(c). (37)
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Thus, (34) and (37) yield:

pi (c) = yi (c)/2ti ≤ x(c)/2 = (1/2)

[
2

n

]
=

[
1

n

]
for all i ∈ J .

Since n ≥ 3,we have (1/n) < [2/(n+1)], and so the right-hand inequality in (DOP’)
holds in case (a).

In case (b), we have tk = 1, and so:

z(c) = yk(c)/tk = yk(c) ≤ 2x(c). (38)

Using (32) and (38), and Proposition 2(iii), we get:

2 = yk(c) +
∑
i �=k

yi (c)

≥ z(c) +
∑
i �=k

ti y(c)

≥ z(c) +
∑
i �=k

ti x(c)

≥ z(c) +
∑
i �=k

ti {z(c)/2}

= z(c)

⎡
⎣1 +

∑
i �=k

(ti/2)

⎤
⎦

= z(c)

[
{1 − (tk/2)} +

m∑
i=1

(ti/2)

]

= z(c) [(1/2) + (n/2)] (39)

where we used (32) in line 1, Proposition 2(iii) in line 3 and (38) in line 4. This yields:

z(c) ≤
[

4

n + 1

]

so that:

pi (c) = yi (c)/2ti ≤ z(c)/2 ≤
[

2

n + 1

]
for all i ∈ J .

This establishes the right-hand inequality in (DOP’) in case (b).
We proceed now to establish the left-hand inequality in (DOP’). We divide up our

analysis into two cases (a) c = (m, s, t) is a scattered Nash equilibrium; and (b)
c = (m, s, t) is a clustered Nash equilibrium. In case (a), the result follows directly
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from Proposition 1. We now analyze case (b). In case (b), we note that by Corollary 2,

x(c) ≥ 1

n − 1
. (40)

Thus, for all platforms si (with i ∈ J ) we must have:

pi (c) = yi (c)/2ti ≥ y(c)/2 ≥ x(c)/2 ≥
[

1

2(n − 1)

]

where the second inequality follows from Proposition 2(iii), and the last inequality
from (40). This establishes the left-hand inequality in (DOP’) in case (b). ��

4.5 Best bounds in the distribution of payoffs

In the context of Example 2 with n = 3,we see that the lower bound of [1/2(n−1)] =
25% in (DOP’), and the upper bound of [2/(n + 1)] = 50% in (DOP’) are attained.
This shows that the bounds in (DOP’) are the best possible for n = 3.

This raises the question of whether, in general, the bounds given in Theorem 2 (for
the distribution of payoffs in an arbitrary Nash equilibrium) are the best possible. In
this subsection, we provide answers to this question separately for the lower bound in
(DOP’) and the upper bound in (DOP’).

4.5.1 Lower bound in the distribution of payoffs

We present an example to show that the lower bound of the interval, given in both
Proposition 1 and Theorem 2, is the “best possible” in the sense that given any n ≥ 3,
it is possible to construct a scattered Nash equilibrium with n players, such that the
payoff of some player in that equilibrium is exactly equal to [1/2(n − 1)].
Example 3 Let n ≥ 3 be given. Divide the circumference of the circle into (n − 1)
equal parts. This will generate (n − 1) points on the circle, equally spaced.

Place the platforms {s1, . . . , sn−1} at these (n − 1) points. To make the instruction
more precise, place s1 at any one of the (n − 1) points. Place s2 at the next available
point (of the remaining n − 2 points) as you go clockwise around the circle, starting
from s1. Continue similarly with s3, . . . , sn−1. Finally, place the platform sn at the
mid point of the arc arc(sn−1, s1). For an illustration of this procedure for n = 5, see
Fig. 6.

The largest empty stretch is:

x(s) = 1

n − 1
. (41)

The neighborhood with the smallest arc length is:

y(s) = yn(s) = 1

n − 1
. (42)
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Fig. 6 Lower bound of DOP (Example 3)

Thus, by Theorem 1, the placement s = {s1, . . . , sn} described above is a Nash equi-
librium.

Using (42), the payoff of player n in this Nash equilibrium is:

pn(s) = yn(s)

2
= 1

2(n − 1)
(43)

which is precisely the lower bound of � in (DOP’).

Remark The lower bound in (DOP’) is also attained when n = 2, since in that case,
the payoff of each player in any Nash equilibrium is equal to (1/2).

4.5.2 Upper bound in the distribution of payoffs

We now focus on the question whether the upper bound of the interval, given in both
Proposition 1 and Theorem 2, is the “best possible”. When n ≥ 3, and n is odd, we
show that the upper bound in (DOP’) is the best possible in the following sense. Given
n ≥ 3 and n odd, and any positive number β smaller than this upper bound:

β <
2

n + 1
(44)

we can construct an example of a scattered Nash equilibrium, such that the payoff
of some player exceeds β in that equilibrium. Thus, [2/(n + 1)] is not just an upper
bound, it is the least upper bound of the payoff of the players in a Nash equilibrium,
for n ≥ 3 and n odd.
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Unlike the result for the lower bound, we do not claim that the bound [2/(n+1)] is
actually attained in aNash equilibrium forn ≥ 3withn odd.This is principally because
we work with scattered Nash equilibrium, for which there is a complete characteri-
zation provided by Theorem 1. The partial characterization result (in Proposition 2)
of all Nash equilibria (scattered and clustered) does not provide us with a sufficient
condition to check whether a proposed placement is a Nash equilibrium. It is certainly
possible that the least upper bound [2/(n+ 1)] is actually attained in a clustered Nash
equilibrium, but we have not pursued this issue. [For n = 3, this least upper bound is
attained in a clustered Nash equilibrium, as we checked in Example 2].

Example 4 (The result for n odd) Let n ≥ 3 be given, with n odd. Then (n + 1) is
even, and N = (n+1)/2 is an integer, greater than or equal to 2. Let β be any positive
number satisfying (44). Denote:

ε ≡ 2

n + 1
− β ∈

(
0,

2

n + 1

)
. (45)

Divide the circumference of the circle into N equal parts. This will generate N
points on the circle, equally spaced.

Place the platform s1 at any one of the N points. Place s3 at the next available point
(of the remaining N − 1 points) as you go clockwise around the circle, starting from
s1. Continue similarly with s5, . . . , sn . Notice that only the odd numbered platforms
have been located at these N points. For example, with n = 5, we will have N = 3,
and this procedure will place platforms s1, s3, and s5 at the N = 3 available points,
moving clockwise from s1 to s3 and then clockwise from s3 to s5. Observe that:

arc(s1, s3) = · · · = arc(sn−2, sn) = arc(sn, s1) = 1

N
= 2

n + 1
. (46)

For an illustration of this procedure for n = 5, see Fig. 7.
We now proceed to place the even numbered platforms as follows. Place s2 in

arc(s1, s3) so that arc(s2, s3) = ε. Since:

ε <
2

n + 1
= 1

N
= arc(s1, s3)

this is certainly possible. Similarly, place sk in arc(sk−1, sk+1)with arc(sk, sk+1) = ε

for all k ∈ {2, 4, . . . , n − 1}. See the figure again for an illustration of this procedure
for n = 5.

It is now easy to check that:

y j (s) = (1/N ) for all j ∈ {2, 3, . . . , n − 1}. (47)

Further, we have:

yn(s) = (1/N ) + ε; y1(s) = (2/N ) − ε. (48)
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Fig. 7 Upper bound of DOP (Example 4)

Using (45), (47) and (48), the neighborhood with the smallest arc length is:

y(s) = 1

N
. (49)

The largest empty stretch is:

x(s) = a(sn, s1) = 1

N
. (50)

Thus, by Theorem 1, the placement s = {s1, . . . , sn} described above is a Nash equi-
librium.

Using (48), the payoff of player 1 in this Nash equilibrium is:

p1(s) = y1(s)

2
= 1

N
− ε

2
= 2

n + 1
− ε

2
>

2

n + 1
− ε = β. (51)

This shows that [2/(n + 1)] is the least upper bound of the payoff of the players in a
Nash equilibrium, for n ≥ 3 and n odd.

Example 5 (The result for n even) For n ≥ 3 and n even, the upper bound in (DOP’) is
not necessarily a least upper bound of the payoff of the players in a Nash equilibrium.
For instance, with n = 4, it can be shown that an upper bound of the payoff of the
players in any scattered Nash equilibrium is equal to:

1

3
= 2

n + 2
<

2

n + 1
= 2

5
. (52)
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Fig. 8 Upper bound of DOP for n = 4 (Example 5)

To see this, we proceed as follows. With n = 4, let s = {s1, s2, s3, s4} be an
arbitrary scattered Nash equilibrium. Recall that the arc length of the empty stretch of
maximum arc length is denoted by x(s), and we define:

y(s) = min{y1(s), . . . , y4(s)}; z(s) = max{y1(s), . . . , y4(s)}.

There is k ∈ I = {1, . . . , 4} such that yk(s) = z(s). Note that by Theorem 1, we
have:

z(s) = yk(s) ≤ 2x(s) ≤ 2y(s). (53)

Without loss of generality, we can take k = 1. The neighbourhood Y1(s) defines s j
and sq with s j �= sq such that:

Y1(s) = arc(s j , sq). (54)

Again without loss of generality, we can take j = 2 and q = 3. It then follows that s4
belongs to the arc arc(sq , s j ) = arc(s3, s2). Thus,

Y4(s) = arc(s3, s2). (55)

See Fig. 8 for an illustration of the locations s1, s2, s3, and s4.

The neighborhood Y1(s) consists of two empty stretches (and the point s1),
arc(s2, s1) andarc(s1, s3).The corresponding arc lengths can bewritten as [y1(s)/2]+
ε and [y1(s)/2] − ε respectively, where − [y1(s)/2] < ε < [y1(s)/2] . Similarly, the
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neighborhood Y4(s) consists of two empty stretches (and the point s4), arc(s3, s4)
and arc(s4, s2). The corresponding arc lengths can be written as [y4(s)/2] + η and
[y4(s)/2]−η respectively, where− [y4(s)/2] < η < [y4(s)/2] .Note that ε and η are
being allowed to be either negative or positive or zero. [In Fig. 8, ε = 0 while η < 0].

With this notation we have:

y2(s) = a(s4, s2) + a(s2, s1) = [y4(s)/2] − η + [y1(s)/2] + ε (56)

and:

y3(s) = a(s1, s3) + a(s3, s4) = [y1(s)/2] − ε + [y4(s)/2] + η. (57)

Using (56) and (57), we can now write:

2 = y1(s) + y2(s) + y3(s) + y4(s)

= y1(s) + {[y4(s)/2] − η + [y1(s)/2] + ε} +
{[y1(s)/2] − ε + [y4(s)/2] + η} + y4(s)

= 2y1(s) + 2y4(s)

≥ 2z(s) + 2y(s)

≥ 2z(s) + z(s)

= 3z(s) (58)

where we have used (53) in the last but one line of (58). Thus, we obtain:

z(s) ≤ 2

3
(59)

and so:

pi (s) = yi (s)

2
≤ z(s)

2
≤ 1

3
for all i ∈ I = {1, 2, 3, 4}. (60)

5 Concluding remarks

This paper was an exercise in abstract geometric reasoning. When drawing on it for
more applied models it will be important to add relevant complications. In applying
it to retail trading and location choice or brand proliferation it will be important to
introduce the option to vary prices. When applying to electoral politics we need to
account for the fact that candidates typically come with a prior record of ideology and
a sharp shift in this can cause voter dissonance. In all these models there may also be
a case for considering sequential moves which would convert this into an extensive-
form game. It is hoped that the simple model presented here can be of value for such
extensions.
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6 Appendix

6.1 Proof of claim (5) in Sect. 3

Since k �= j, the definition of s′ implies that s′
k = sk ∈ Yk(s). If there is some s′

r in
Yk(s) with s′

r �= s′
k, then r �= k, j, and so by definition of s′, s′

r = sr must hold. In
this case, we have sr in Yk(s) with sr �= sk, a contradiction to the definition of Yk(s).
This establishes that there is no s′

r in Yk(s)with s
′
r �= s′

k . Since Yk(s) is a connected set
containing s′

k, and there is no s
′
r in Yk(s) with s

′
r �= s′

k, we must have Yk(s) ⊂ Yk(s′),
and consequently Ȳk(s) ⊂ Ȳk(s′) as well.

Using (NBD), let us write Yk(s) = arc(sL(k), sR(k)) ≡ arc(sp, sq). Note that
sL(k) �= sk, and sR(k) �= sk, and sL(k) �= sR(k). Now, if sL(k) = s j , then since
sL(k) ∈ Ȳk(s) and s j ∈ Y j (s), we would have Ȳk(s) ∩ Y j (s) �= φ, a contradiction to
the definition of case (b)(I). Thus, we must have sL(k) �= s j , and similarly sR(k) �= s j .
By definition of s′ it follows that s′

p = sp and s′
q = sq .

Both sp and sq belong to Ȳk(s), and since Ȳk(s) ⊂ Ȳk(s′), they belong to Ȳk(s′).
However, they cannot be interior points of Ȳk(s′); that is, they cannot belong to Yk(s′).
To see this, note that sp �= sk, sp = s′

p and sk = s′
k, and so s

′
p �= s′

k .Then, by definition
of Yk(s′), we infer that s′

p cannot be in Yk(s′); that is, sp cannot be in Yk(s′). A
similar reasoning establishes that sq cannot be an interior point of Ȳk(s′). Thus, both
are boundary points of Ȳk(s′). This means that Ȳk(s′) is either the set arc[sp, sq ]
or the set arc[sq , sp]. Since Yk(s) = arc(sp, sq), and Ȳk(s′) has to contain the set
Ȳk(s) = arc[sp, sq ],we conclude that Ȳk(s′)must be the set arc[sp, sq ]. Thus, Yk(s′)
must be the set arc(sp, sq), and so Yk(s) = Yk(s′).

6.2 Proof of claim (8) in Sect. 3

We break up our analysis into two cases: (A1) sL( j) = sR(k) and (A2) sL( j) �= sR(k).

Case (A1): In this case, s j belongs to arc(sR(k), sL(k)]. If s j actually belongs to
arc(sR(k), sL(k)), then Y j (s) = arc(sR(k), sL(k)), which is disjoint from Ȳk(s), con-
tradicting the fact that Y j (s) ∩ Ȳk(s) �= φ in subcase (b)(II). Thus, s j = sL(k), and so
sk = sR( j), so that (8)(i) in claim (8) holds.

Case (A2):Wesubdivide our analysis into the following twopossibilities (A2a) sL( j) ∈
Ȳk(s), (A2b) sL( j) /∈ Ȳk(s).

In subcase (A2a), sL( j) must be equal to sL(k) or sk or sR(k). The last possibility is
ruled out since in (A2) we have sL( j) �= sR(k). If sL( j) = sL(k), then s j must be equal
to sk,which is ruled out since s is a scattered placement (recall that k �= j in case (b)).
Thus, we must have sL( j) = sk and consequently s j = sR(k). That is, (8)(ii) in claim
(8) holds.

In subcase (A2b), sL( j) ∈ arc(sR(k), sL(k)), and consequently sR( j) /∈ arc(sR(k),

sL(k)). This is because if sR( j) ∈ arc(sR(k), sL(k)), then Y j (s) is entirely contained
in arc(sR(k), sL(k)), which is disjoint from Ȳk(s), contradicting the fact that Y j (s) ∩
Ȳk(s) �= φ in subcase (b)(II).
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Since sR( j) /∈ arc(sR(k), sL(k)), we must have sR( j) ∈ Ȳk(s) ≡ arc[sL(k), sR(k)].
Thus, sR( j) must be equal to sL(k) or sk or sR(k). The first possibility is ruled out
since sR( j) = sL(k) would imply that Y j (s) ∩ Ȳk(s) = φ, a contradiction. The third
possibility is ruled out because sR( j) = sR(k) would imply that s j must be equal to sk,
which would contradict the fact that s is a scattered placement (recall that k �= j in
case (b)). Thus, we must have sR( j) = sk and consequently s j = sL(k), so that (8)(i)
in claim (8) holds.
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